Random graphs, weak coarse embeddings, and higher index theory
نویسنده
چکیده
This paper studies higher index theory for a random sequence of bounded degree, finite graphs with diameter tending to infinity. We show that in a natural model for such random sequences the following hold almost surely: the coarse Baum-Connes assembly map is injective; the coarse Baum-Connes assembly map is not surjective; the maximal coarse BaumConnes assembly map is an isomorphism. These results are closely tied to issues of expansion in graphs: in particular, we also show that such random sequences almost surely do not have geometric property (T), a strong form of expansion. The key geometric ingredients in the proof are due to Mendel and Naor: in our context, their results imply that a random sequence of graphs almost surely admits a weak form of coarse embedding into Hilbert space.
منابع مشابه
Labeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملA theorem of Hrushovski–Solecki–Vershik applied to uniform and coarse embeddings of the Urysohn metric space
A theorem proved by Hrushovski for graphs and extended by Solecki and Vershik (independently from each other) to metric spaces leads to a stronger version of ultrahomogeneity of the infinite random graph R, the universal Urysohn metric space U, and other related objects. We propose a new proof of the result and show how it can be used to average out uniform and coarse embeddings of U (and its v...
متن کاملGroups with no coarse embeddings into hyperbolic groups
We introduce an obstruction to the existence of a coarse embedding of a given group or space into a hyperbolic group, or more generally into a hyperbolic graph of bounded degree. The condition we consider is “admitting exponentially many fat bigons”, and it is preserved by a coarse embedding between graphs with bounded degree. Groups with exponential growth and linear divergence (such as direct...
متن کاملHigher index theory for certain expanders and Gromov monster groups II
In this paper, the second of a series of two, we continue the study of higher index theory for expanders. We prove that if a sequence of graphs has girth tending to infinity, then the maximal coarse Baum-Connes assembly map is an isomorphism for the associated metric space X. As discussed in the first paper in this series, this has applications to the Baum-Connes conjecture for ‘Gromov monster’...
متن کاملApplications of isometric embeddings to chemical graphs
Abstract. Applications of isometric embeddings of benzenoid graphs are surveyed. Their embeddings into hypercubes provide methods for computing the Wiener index and the Szeged index, while embeddings into the Cartesian product of trees lead to fast algorithms. A new method for computing the hyperWiener index of partial cubes in general, and of benzenoid graphs and trees in particular, is also p...
متن کامل